Completely positive reformulations for polynomial optimization
نویسندگان
چکیده
Polynomial optimization encompasses a very rich class of problems in which both the objective and constraints can be written in terms of polynomials on the decision variables. There is a well established body of research on quadratic polynomial optimization problems based on reformulations of the original problem as a conic program over the cone of completely positive matrices, or its conic dual, the cone of copositive matrices. As a result of this reformulation approach, novel solution schemes for quadratic polynomial optimization problems have been designed by drawing on conic programming tools, and the extensively studied cones of completely positive and of copositive matrices. In particular, this approach has been applied to solve key combinatorial optimization problems. Along this line of research, we consider polynomial optimization problems that are not necessarily quadratic. For this purpose, we use a natural extension of the cone of completely positive matrices; namely, the cone of completely positive tensors. We provide a general characterization of the class of polynomial optimization problems that can be formulated as a conic program over the cone of completely positive tensors. As a consequence of this characterization, it follows that recent related results for quadratic problems can be further strengthened and generalized to higher order polynomial optimization problems. Also, we show that the conditions underlying the characterization are conceptually the same, regardless of the degree of the polynomials defining the problem. To illustrate our results, we discuss in further detail special and relevant instances of polynomial optimization problems.
منابع مشابه
Inner Approximations of Completely Positive Reformulations of Mixed Binary Quadratic Optimization Problems: A Unified Analysis∗
August 24, 2015 Abstract Every quadratic optimization problem with a mix of continuous and binary variables can be equivalently reformulated as a completely positive optimization problem, i.e., a linear optimization problem over the convex but computationally intractable cone of completely positive matrices. In this paper, we focus on general inner approximations of the cone of completely posit...
متن کاملInner approximations of completely positive reformulations of mixed binary quadratic programs: a unified analysis
Every quadratic programming problem with a mix of continuous and binary variables can be equivalently reformulated as a completely positive optimization problem, i.e., a linear optimization problem over the convex but computationally intractable cone of completely positive matrices. In this paper, we focus on general inner approximations of the cone of completely positive matrices on instances ...
متن کاملInteger Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations
We consider a single-server scheduling problem given a fixed sequence of job arrivals with random noshows and service durations. The joint probability distribution of the uncertain parameters is assumed to be ambiguous and only the support and first moments are known. We formulate a class of distributionally robust optimization models that incorporate the worst-case expected cost and the worst-...
متن کاملLower bounds on matrix factorization ranks via noncommutative polynomial optimization
We use techniques from (tracial noncommutative) polynomial optimization to formulate hierarchies of semidefinite programming lower bounds on matrix factorization ranks. In particular, we consider the nonnegative rank, the positive semidefinite rank, and their symmetric analogues: the completely positive rank and the completely positive semidefinite rank. We study the convergence properties of o...
متن کاملQuadratic reformulations of nonlinear binary optimization problems
Very large nonlinear unconstrained binary optimization problems arise in a broad array of applications. Several exact or heuristic techniques have proved quite successful for solving many of these problems when the objective function is a quadratic polynomial. However, no similarly efficient methods are available for the higher degree case. Since high degree objectives are becoming increasingly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 151 شماره
صفحات -
تاریخ انتشار 2015